
Canal: Scaling Social Network-Based Sybil Tolerance Schemes

Bimal Viswanath

MPI-SWS

bviswana@mpi-sws.org

Mainack Mondal

MPI-SWS

mainack@mpi-sws.org

Krishna P. Gummadi

MPI-SWS

gummadi@mpi-sws.org

Alan Mislove

Northeastern University

amislove@ccs.neu.edu

Ansley Post

MPI-SWS

abpost@mpi-sws.org

Abstract

There has been a flurry of research on leveraging social net-

works to defend against multiple identity, or Sybil, attacks. A

series of recent works does not try to explicitly identify Sybil

identities and, instead, bounds the impact that Sybil identi-

ties can have. We call these approaches Sybil tolerance; they

have shown to be effective in applications including repu-

tation systems, spam protection, online auctions, and con-

tent rating systems. All of these approaches use a social net-

work as a credit network, rendering multiple identities in-

effective to an attacker without a commensurate increase in

social links to honest users (which are assumed to be hard to

obtain). Unfortunately, a hurdle to practical adoption is that

Sybil tolerance relies on computationally expensive network

analysis, thereby limiting widespread deployment.

To address this problem, we first demonstrate that despite

their differences, all proposed Sybil tolerance systems work

by conducting payments over credit networks. These pay-

ments require max flow computations on a social network

graph, and lead to poor scalability. We then present Canal,

a system that uses landmark routing-based techniques to ef-

ficiently approximate credit payments over large networks.

Through an evaluation on real-world data, we show that

Canal provides up to a three-order-of-magnitude speedup

while maintaining safety and accuracy, even when applied

to social networks with millions of nodes and hundreds of

millions of edges. Finally, we demonstrate that Canal can

be easily plugged into existing Sybil tolerance schemes, en-

abling them to be deployed in an online fashion in real-world

systems.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

EuroSys’12, April 10–13, 2012, Bern, Switzerland.
Copyright c© 2012 ACM 978-1-4503-1223-3/12/04. . . $10.00

Categories and Subject Descriptors C.4 [Perfor-

mance of Systems]: Design studies; C.2.0 [Computer-

Communication Networks]: General—Security and protec-

tion

General Terms Algorithms, Design, Performance, Secu-

rity

Keywords Sybil attacks; social networks; sybil tolerance;

social network-based Sybil defense; credit networks

1. Introduction

Multiple identity attacks—commonly known as Sybil at-

tacks [10]—are known to be a fundamental problem in many

distributed systems. In a Sybil attack, a malicious user cre-

ates multiple identities and takes advantage of these identi-

ties to attack the system. For example, in social networking

sites like Digg or YouTube, where content is rated based on

user feedback, an attacker can create multiple identities and

cast multiple votes, thereby manipulating content popular-

ity. Recent studies have shown that Sybil attacks are becom-

ing more widespread [42], affecting news aggregators like

Digg [35], microblogs like Twitter [46], and review sites like

TripAdvisor [33].

Recently, a series of schemes have been proposed that de-

fend against Sybil attacks by leveraging social networks [24,

29, 34, 35]. These schemes are based on the assumption that,

although an attacker can create an arbitrary number of Sybil

identities, she cannot establish an arbitrarily large number of

social connections to non-Sybil identities. In contrast to pre-

vious social network-based Sybil detection, e.g. [6, 44, 45],

the schemes we consider do not explicitly identify Sybil

identities in the network but, instead, bound the impact that

Sybil identities can have. This approach is called Sybil tol-

erance [39]; these schemes have been shown to be effec-

tive in applications including reputation systems [9], spam

protection [24], online auctions [29], and content rating sys-

tems [35].

We demonstrate that despite their differences, all of these

schemes work by assigning credit values to links in a so-

cial network, and then conducting payments between nodes

in the network. Effectively, these schemes are using credit

networks [5, 12] as a basis for Sybil tolerance.1 Unfortu-

nately, these schemes do not scale well to large social net-

works. Finding routes for credit payments can be reduced to

determining the maximum flow [11] between nodes in the

network; doing this over large graphs is known to be expen-

sive [13], and existing techniques for pre-calculating [14] the

maximum flow are not directly applicable since the credit

network is constantly changing. This serves as a practical

deployment barrier, and to the best of our knowledge, none

of these Sybil tolerance schemes have been deployed in a

real-world system.

In this paper, we address this situation and scale Sybil tol-

erance schemes to extremely large graphs. We build Canal, a

system that can efficiently approximate credit payments over

large, dynamic networks. Canal trades accuracy for speed;

we demonstrate that Canal’s approximation rarely impacts

users and does not change the Sybil tolerance properties

of the application or benefit malicious users. We show that

Canal can be directly plugged into existing Sybil tolerance

schemes, and would reduce the credit payment latency from

multiple seconds to a few hundred microseconds.

In more detail, Canal uses a novel landmark routing-

based algorithm, routing credit payments via landmark

nodes [36]. Canal consists of two components: a set of uni-

verse creator processes, which continually select new land-

marks, and a set of path stitcher processes, which contin-

ually process incoming credit payment requests. Since the

credit network is constantly changing (due to credit move-

ments, as well as new identities and social links), Canal con-

tinually calculates new landmarks in parallel with making

flow calculations. We design Canal to naturally take advan-

tage of multiple cores and machines, enabling Canal to run

over social networks that cannot be stored on a single ma-

chine.

We evaluate Canal on real-world networks at scale. We

first demonstrate that Canal’s approximation provides a dra-

matic speedup in the processing of credit payments, enabling

Canal to be run in an online fashion. We then show that

the approximation that Canal uses rarely impacts users, and

that users eventually receive the same total available credit

in Canal as they would in an exact system. Finally, we re-

run the experimental setup of two previously proposed Sybil

tolerance schemes, and demonstrate that using Canal would

provide up to a 2,329-fold speedup in runtime while main-

taining over 94% accuracy. This shows that existing schemes

can naturally leverage Canal, and that Canal enables new

1 Credit networks are a concept borrowed from the electronic commerce

community. Credit networks provide a way to model trust between identities

in a distributed system and leverage it as a payment infrastructure for

transactions between arbitrary identities, even in the absence of a central

trusted bank and common currency.

schemes to be designed to inherit the benefits of credit net-

works.

The remainder of this paper is organized as follows. Sec-

tion 2 provides background on the Sybil tolerance schemes

we consider, and Section 3 provides background on the

credit networks that underlie these schemes. Section 4 de-

scribes the design of Canal. Section 5 provides Canal mi-

crobenchmarks on real-world graph data, and Section 6 eval-

uates the performance of Canal when applied to real-world

Sybil tolerance schemes. Section 7 concludes.

2. Background and related work

In this section, we give a brief overview of the prior work

on social network-based Sybil defenses, with the goal of

placing the contributions of this paper into context. A more

extensive background is provided in [39]; we review the

details relevant to Canal here. For the remainder of this

paper, we consider identity-based systems where each user

is intended to have a single identity and is expected to use the

identity when interacting with other users in the system. In

such systems, we call a user with multiple identities a Sybil

user and each identity she uses a Sybil identity.

We divide the related work on Sybil defense into three

classes, discussed in the sections below: Sybil prevention,

Sybil detection, and Sybil tolerance.

2.1 Sybil prevention

Traditional defenses against Sybil attacks rely on either

trusting central authorities or tying identities to resources

that are hard to forge or obtain in abundance, preventing a

user from creating many Sybil identities in the first place. We

term these approaches Sybil prevention. For instance, sys-

tems like Cyworld [4] require users to present verified identi-

ties, such as passports or social security numbers, when cre-

ating new accounts. Other approaches include solving mem-

ory or CPU-intensive crypto-puzzles before granting access

to system services [1–3, 41].

2.2 Sybil detection

Researchers have also explored allowing Sybil identities to

be created but later detecting the identities and preventing

them from interacting with other users (e.g., banning those

identities) [32]. We term these approaches Sybil detection.

Recently, researchers have explored analyzing the struc-

ture of the social network as a mechanism for Sybil detec-

tion [6, 20, 30, 34, 44, 45]. To identify Sybils, all social

network-based Sybil detection schemes make two common

assumptions [43]:

1. Although an attacker can create an arbitrary number of

Sybil identities in the social network, she cannot establish

an arbitrary number of social connections to non-Sybil

identities.

2. The non-Sybil region of the network is densely connected

(or fast-mixing [25]), meaning random walks in the non-

Sybil region quickly reach a stationary distribution.

The first assumption concerns how the Sybil and non-

Sybil identities are connected and is necessary in order for

the schemes to be able to leverage the social network; if it

were not assumed, the attacker could establish social net-

work links at will. While this assumption may not hold on

all online social networks, recent work suggests that there

are social networks where this assumption holds true [28].

The second assumption concerns the internal structure of the

non-Sybil region and is necessary for these schemes to locate

the boundary between the non-Sybil region and the Sybil

region. If the second assumption did not to hold (implying

small cuts existed within the non-Sybil region), the honest

identities on either sides of cuts are likely be blocked from

interacting with each other [40].2

2.3 Sybil tolerance

More recently, a series of schemes has taken an alternate

approach to defend against Sybils. Instead of trying to ex-

plicitly label identities as Sybil or non-Sybil, these schemes

are designed to limit the impact that a malicious user can

have on others, regardless of the number of identities the

malicious user possesses. We refer to these schemes as Sybil

tolerance [39]. Sybil tolerance schemes make the same as-

sumption 1 from Section 2.2, but avoid making assumption

2. Instead, they require more information about the system

to which they are applied: In addition to the social network,

these schemes also take as input the interactions between

users. By doing so, they are able to allow or deny individual

interactions, and reason about the impact (in terms of inter-

actions) that identities have on one another.

The result is that the guarantees of Sybil tolerance are

expressed in terms of interactions that are allowed. To com-

pare, Sybil detection schemes reason only about identities

(i.e., they reason about identities being admitted, and express

their guarantees in terms of the number of Sybil identities

admitted), while Sybil tolerance schemes reason about in-

teractions (i.e., they decide whether certain interactions are

allowed or denied). Thus, in a Sybil tolerance scheme, a cer-

tain pair of identities may be allowed to participate in certain

interactions and not others, and may be allowed to interact

at certain times and not others (all depending on the state of

the system).

We now provide a brief overview of three example Sybil

tolerance schemes. It is important to note that other Sybil

2 Researchers have begun to explore whether the second assumption holds

in practice. Unfortunately, recent work [26] demonstrates that the mixing

time for many real-world networks is substantially higher than was previ-

ously thought, suggesting that the networks are actually not fast mixing.

Additionally, another study [19] demonstrates that in real-world social net-

works, identities in the periphery are often organized into densely connected

clusters that connect to the rest of the network via a small cut.

tolerance schemes exist [9, 27], but we only discuss the three

below for brevity.

Ostra [24] is targeted at countering unwanted communi-

cation (i.e., spam). Ostra assumes the existence of a social

network, and assigns credit values to the links. When a user

wishes to send a message to another user, Ostra locates a

path with available credit from the source to the destination.

If such a path is found, credit is “paid” from each user to the

next along the path, and the credit is refunded if the message

is not marked as spam. If no path can be found, the message

is blocked from being sent.

SumUp [35] is designed to prevent users with multiple

identities from manipulating object ratings in content shar-

ing systems like Digg. SumUp assumes the existence of a

social network and selects a trusted vote collector. SumUp

then assigns weights to the links around the vote collector by

handing out “tokens” (causing the links around the vote col-

lector to be more highly weighted; links farther away are as-

signed weight 1). Finally, to vote, each voting identity must

find a path with credit between himself and the vote collec-

tor and consume a credit along that path; if no such path can

be found, the vote is discarded.

Bazaar [29] provides stronger user reputations in online

marketplaces like eBay. To do so, Bazaar creates a trans-

action network (akin to a social network) by linking pairs

of identities that have successfully completed a transaction;

the weight of each link is the dollar value of the transaction.

When a new transaction is about to take place, Bazaar com-

pares the value of the new transaction to the max flow be-

tween the buyer and seller. If sufficient flow is found, credit

totaling the value of the transaction is removed between the

buyer and seller, and is added back if the transaction is later

reported to not be fraudulent. Otherwise, if sufficient flow is

not found, the new transaction is denied.

Unfortunately, these schemes all tend to require signif-

icant computational resources in order to locate paths for

credit payments. For example, on average, Bazaar takes over

6 seconds of CPU time to determine whether sufficient flow

exists on a network with 5.5 M links [29], and Ostra requires

over 35 milliseconds on a network with 3.4 M links [24].

Given that both of these are intended to be run in an online

fashion, Bazaar would require an average of 6 seconds of

CPU time for every bid on a marketplace like eBay, and Os-

tra would require an average of 35 milliseconds of additional

CPU time for every message sent. Both of these represent

substantial computational resource investments. With ever-

larger and denser networks being created, it is unsurprising

that—to the best of our knowledge—none of these schemes

have been deployed in a real-world system.

The underlying reason for this high computation time is

that these systems are required to check for credits on all

possible paths, requiring one or more breadth-first-searches

(BFSs) over the graph, with O(E) cost per BFS.

A B

5

2

Figure 1. Simple credit network between two nodes A and

B, with credit available cab and cba shown. In this exam-

ple, A has 5 credits available from B, and B has 2 credits

available from A.

3. Sybil tolerance and credit networks

We now show that Sybil tolerance schemes are all effectively

using credit networks. We first give a brief overview of

credit networks before describing how existing systems are

leveraging them internally.

3.1 Credit networks

Credit networks [5, 12] were first introduced in the elec-

tronic commerce community in order to build transitive trust

protocols in an environment where there is only pairwise

trust between accounts and there are no central trusted enti-

ties. In a credit network, identities (nodes) trust each other by

offering pairwise credit (links) up to a certain limit. Nodes

can use the credit to pay for services they receive from each

other. The credit network could also be used as a payment in-

frastructure between nodes that do not directly extend credit

to each other. Nodes can route credit payments to a remote

node via network paths that traverse over links where credits

are available (see Figures 1 and 2).

Formally, a credit network is a directed graph G = (V, E)
where V is the set of nodes and E is the set of labeled

edges. Each directed edge (a, b) ∈ E is labeled with a

dynamic scalar value cab, called the available credit, and is

initialized to Cab. Intuitively, Cab represents the initial credit

allocation that b gives to a, and cab represents the amount

of unconsumed credit that b has extended to a. Note that

cab ≥ 0 at all times.

Payments between two nodes in a credit network are con-

tingent upon the availability of credit along network paths

connecting the nodes. If a node a wishes to pay node b a

total of c credits, then a path

a → u1 → ... → un → b

(which could just be a → b) must exist where c credits are

available on each (i, j) link (i.e., cij ≥ c). If so, the credit

available on each directed edge cij on the path from a to b is

decreased by c. As a result of this action, each node “pays”

c credits to its successor on the path to b.

It is not necessary to find a single path with available

credit along each edge; instead, the payment could be split

across multiple paths. For example, consider the network

shown in Figure 3. In this scenario, node A could pay 4

credits to node E by paying 2 credits along A → B →
C → E and 2 credits along A → B → D → E.

A B
5

2

3
9

1

4
C DE

F
G

Figure 2. More complex credit network, with credit avail-

able (cij) shown for each link. In this example, A can pay 1

credit to D along the path A → B → C → D. After pay-

ing the credit, the values on these links would be 4, 2, and

0, respectively. Note that, for simplicity, the links not on this

path are only shown as dashed lines.

3.2 Sybil tolerant nature of available credit

Credit networks have been shown to be naturally tolerant to

Sybil attacks [31]. In brief, we assume that an attacker is

allowed to create as many identities as she wishes and ma-

nipulate the available credit on links between identities she

owns. However, the attacker is able to establish only a lim-

ited number of links to non-malicious users (by assumption

1 in Section 2.2), and she can not manipulate the credit avail-

able to him on these links.

As shown in Figure 4, the total amount of available credit

to the malicious user is the sum of the available credit on

her links to other users. An attacker with an arbitrary num-

ber of Sybil identities has exactly the same available credit

as the attacker with just one identity; in this case, the rele-

vant set of edges is the cut between the subgraph consisting

of the attacker’s Sybil identities and the rest of the network.

Any available credit on edges between the attacker’s Sybil

identities does not matter, because it does not enable ad-

5

2

3
9

X

2
2

10

6
X

1

X2

X3

Rest of the

network
A

Figure 4. Credit networks leading to Sybil tolerance. User

X can create any number of identities (X1, X2, X3) and ar-

bitrarily assign the credit available between them. However,

if X wishes to pay credits from any of these identities to an-

other identity in the rest of the network, the credits must be

debited from X’s single valid link to A. Thus, the multiple

identities do not enable any additional available credit with

nodes in the rest of the network.

5 3

A B

9
C

D

E

3 6

(a)

3 1

A B

5
C

D

E

1 4

(b)

Figure 3. The (a) initial and (b) final state of the credit network with a credit payment along multiple paths. A pays 4 credits

to E: 2 credits are paid along the path A → B → C → E and 2 credits are paid along the path A → B → D → E.

ditional payments to legitimate nodes. Moreover, collusion

between malicious users does not enable the users to access

more available credit together than they could separately.

Thus, available credit in a credit network is resilient to

Sybil attacks.

3.3 Credit networks in existing systems

We now briefly discuss how the three example schemes

discussed in Section 2.3 all work by essentially perform-

ing payments over credit networks. First, we note that each

of the schemes internally uses a credit network: In Ostra

and SumUp, the credit network is based on an externally

provided social network, and in Bazaar, the credit network

(called the risk network) is constructed from the feedback

on prior transactions. Second, we observe that each scheme

assigns available credit to links: In Ostra, the initial available

credit is statically defined by the system operator, in SumUp,

the credit is assigned by a token distribution mechanism, and

in Bazaar, the credit is increased after each successful trans-

action.

Third, we observe that these schemes work by paying

credits along paths between identities. In Ostra, a sender

must first pay a receiver one credit before sending a message;

if the sender is out of credit, the message is not delivered.3

Similarly, in SumUp, each voter must pay one credit to

the vote collector; if no path exists between the voter and

vote collector with available credit, the vote is not counted.

Finally, in Bazaar, when a transaction is about to occur, the

system insists that the buyer pay the seller a number of

credits corresponding to the new transaction value; if the

sufficient available credit does not exist, the transaction is

blocked.4

3.4 Computation speed of credit payments

The high computation time that Sybil tolerance schemes ex-

perience is explained by the use of credit payments over so-

cial networks. First, we observe that performing a credit pay-

ment involves searching for one or more paths with avail-

3 In Ostra, when a sender pays a credit to a receiver, a credit is debited from

the sender–receiver path and, at the same time, added to the reverse path.

Doing so allows Ostra to ensure liveness (as there is always credit available
in the system).
4 In Bazaar, this credit payment is undone if the transaction turns out not to

be fraudulent.

able credit between two nodes; this is essentially the max-

imum flow problem [11], which is known to be a com-

putationally expensive operation. The most efficient algo-

rithms for the maximum flow problem run in O(V 3) [13]

or O(V 2 log(E)) [8] time. Second, techniques that pre-

calculate the all-pairs maximum flow (e.g., Gomory-Hu

trees [14]) cannot be applied to Sybil tolerance schemes,

as these techniques assume a static network and impose

a large, upfront pre-calculation cost of |V | − 1 maximum

flow computations. Credit networks are constantly changing

due to credit manipulations as well as new users and links;

performing |V | − 1 maximum flow computations for every

change in the credit network is impractical. Additionally, al-

gorithms [17] that dynamically maintain a Gomory-Hu tree

when the edge capacities increase or decrease often end up

being expensive as well, requiring several maximum flow

computations for each edge capacity update.

4. Canal design

We now detail the design of Canal, first giving a high-level

overview of the model and goals of Canal before detailing

the internal design.

4.1 Model and goals

Canal is designed to run alongside an existing Sybil toler-

ance scheme, providing two services: (a) maintaining the

state of the credit network and (b) conducting credit pay-

ments. Canal is built to provide these services in a much

faster manner than current implementations. We assume that

Canal is run by the same organization that runs the Sybil

tolerance scheme (alleviating concerns about Canal having

access to potentially private social network data).

In order for existing Sybil tolerance systems like Bazaar

and SumUp to take advantage of Canal, they need only allow

Canal to store the credit network and replace any internal

logic for conducting payments with calls into Canal. To

avoid having to rebuild existing systems from scratch, Canal

exports an API which can be easily used by existing Sybil

tolerant applications. The API includes methods to initialize

and add links to the credit network, but we are primarily

concerned with the method

boolean payment(a,b,c)

that attempts a payment of c credits from identity a to iden-

tity b, and returns whether or not the payment could be made.

Canal responds to payment requests using an approxi-

mation that only considers a subset of the paths that exist

when handling payments. As a result, Canal may not be able

to find paths with available credit between a pair of users

even though such paths exist. However, Canal will never find

paths that do not exist or paths that do exist but do not have

any available credit. Thus, Canal can suffer from false nega-

tives (i.e., a payment is denied even though paths with avail-

able credit exist) but does not suffer from false positives (i.e.,

a payment is allowed even though sufficient credit is not ac-

tually available).

4.2 Design challenges

In order for Canal to be used in a real-world application, it

has to overcome several challenges:

• Latency: Sybil tolerance schemes make user-visible de-

cisions based on whether credit payments can be made.

Thus, they will be practically deployable only if the

Canal processing time is very fast (preferably in the order

of a few milliseconds).

• Efficiency: Sybil tolerance schemes often have to process

large numbers of payments in a short period of time;

Canal must be deployable with reasonable computational

resources.

• Scalability: Sybil tolerance schemes are designed to be

run on very large social networks. Canal should support

credit networks with hundreds of millions of links or

more.

• Accuracy: Canal trades off accuracy for speed. The error

introduced should not impact the Sybil tolerance guaran-

tees, and should rarely impact users.

• Dynamicity: The credit network is constantly changing,

due to payments being processed and changes to the

social network. Canal should be able to support such a

rapidly changing credit network.

4.3 Using landmark routing

Canal speeds up payments using a landmark routing-based

technique. Historically, landmark routing [36] has enabled

paths to be found between any pair of nodes via certain spe-

cific nodes (called landmarks). To do so, each node deter-

mines its path to the landmark; to route between a pair of

non-landmark nodes, we need only have each route to the

landmark. This is effectively stitching a path together out

of two paths, and the stitched path may be longer than the

shortest path (this is particularly likely when the landmark is

located far away from the two nodes).

Canal’s selection of landmark nodes is driven by three

concerns, discussed in detail in the subsections below: First,

we wish to be able to find short paths between nodes, but we

are not required to use the absolute shortest path (Sybil tol-

Level 0 landmark Level 1 landmarks Level 2 landmarks

Universe

Figure 5. Diagram of a 2-level landmark universe, consist-

ing of multiple levels of landmarks. Each level i has 2i land-

marks. Paths can be found using landmark routing; all nodes

share a level 0 landmark, and closer nodes share landmarks

at multiple levels (resulting in shorter paths). The landmarks

at lower levels induce partitions on the network (indicated

by dashed lines).

erance systems are designed so that any payment path will

do, but shorter paths often result in greater efficiency). Sec-

ond, landmark routing is not typically designed for dynamic

graphs (the paths to the landmark are generally treated as

static; if the credit network is changing, Canal needs to up-

date the paths to the landmarks). Third, we may need to con-

duct payments that require multiple paths (the credit avail-

able on any single path may not be sufficient).

4.3.1 Finding short paths

Recent work has designed landmark routing techniques for

accurately finding shortest paths in large networks [16]; we

leverage this existing work to efficiently find short paths. In-

stead of using a single landmark, Canal uses a landmark uni-

verse with multiple levels. At each level i, there are 2i land-

marks selected randomly; each node finds a path to the clos-

est landmark at each level. Thus, if there are k levels, there

are a total of 2k+1−1 landmarks, and each node has paths to

k of these landmarks (one at each level). Furthermore, we re-

fer to a universe with k levels as a k-level landmark universe.

A diagram of a landmark universe is shown in Figure 5.

Using a landmark universe enables Canal to find short

paths. To see why, first consider a payment request between

two nodes who are on opposite sides of the network (i.e., two

nodes who have a relatively large shortest path length). For

this pair of nodes, the only landmark they are likely to share

is the level 0 landmark5 (since they are far away, they are

likely to have paths to two different level 1 landmarks, and

two different level 2 landmarks, etc). Now consider the case

of a payment request between two nodes who are close in the

network. For this pair of nodes, there is likely to be a number

of landmarks shared between them (since they are close in

the network). By stitching a path between these nodes via

one of the higher-level landmarks, we are likely to find a

short path. A full explanation is available in [7, 16].

5 Note that any pair of nodes is guaranteed to share at least one landmark in

a given universe (the level 0 landmark), although the stitched path via that

landmark is not guaranteed to have credit.

It is important to note that Canal’s correctness guarantees

are not affected if a Sybil node is selected as a landmark. On

the other hand, Sybil landmarks may affect the liveness of

paths stitched via that landmark, as links near the landmark

may not have credit. As a result, a Sybil landmark may not

be useful for routing credit payments. Since Canal typically

uses hundreds of landmarks at any time, Sybil landmarks

rarely impact Canal’s ability to route credit payments.

In Section 5, we show how the deployer of Canal can se-

lect the level k of each universe. Higher values of k allow

shorter paths to be located, but introduce an exponentially

increasing number of landmarks (and corresponding over-

head). In practice, setting k to 5 works well on the social

networks we use to evaluate Canal.

4.3.2 Handling dynamic credit networks

We observe that, due to the rapidly changing nature of the

credit network, any existing landmark data may quickly be-

come stale. For example, as new links are introduced into

the credit network, paths may exist that are not reflected in

the landmark universe. Similarly, as credit payments are pro-

cessed, paths near lower-level landmarks are likely to be-

come congested and may run out of available credit (since

a disproportionate number of credit payments will be routed

via these landmarks); this would prevent Canal from finding

available credit that may exist via other potential landmarks.

Canal addresses this issue by continually constructing

landmark universes as it is running, replacing an old universe

whenever a new one is created. This serves two purposes.

First, continually constructing universes enables Canal to in-

corporate changes in the credit network into the landmark

path data. Second, continually constructing universes en-

sures that any node is only a landmark for a short period

of time, reducing the likelihood that the paths around the

landmark would become congested with credit payments.

4.3.3 Finding multiple paths

We noted above that Canal may need to conduct payments

that require multiple paths (i.e., in the example in Figure 3,

suppose A wishes to pay 5 credits to E). In particular, we

would like to be able to locate disjoint paths, as this increases

our likelihood of finding the necessary available credit.

Canal addresses this issue by keeping a queue of recent

landmark universes available. As new landmark universes

are generated, they are added to the end of the queue and

the oldest existing landmark universe is discarded. Keeping

a set of universes available enables Canal to find paths be-

tween pairs of nodes via the landmarks that exist in different

universes. By configuring the number of landmark universes

that are stored in the queue, Canal can control the maximum

number of paths that can be used at once for a credit pay-

ment.

Canal

Path

stitcher

Universe

creator

Common datastore

Sybil

tolerance

scheme

Figure 6. Canal system design.

4.4 Canal components

Figure 6 gives a high level view of Canal system design.

There are three main components in Canal: a common datas-

tore, universe creator processes, and path stitcher processes.

The common datastore serves as a location to store the land-

mark universes and the credit network. The universe creator

processes continually generate new landmark universes as

described above, and the path stitcher processes respond to

payment requests by the Sybil tolerance scheme. In the rest

of this section, we will discuss in detail the design of each

component.

4.4.1 Common datastore

The common datastore serves as the repository for the state

of the credit network as well as the landmark universes.

The credit network is stored as a hash table of links, with

each link stored with its current available credit. Because

multiple processes will be manipulating the values on the

credit network, each link also contains a shared/exclusive

lock that processes must obtain before reading/writing the

credit value. When a new link is added to the credit network,

its lock and credit available are first initialized before it is

inserted into the credit network hash table.

The landmark universes are stored using a linked list, with

a global pointer to the head of the landmark universe list and

each landmark universe pointing to the next. Since multiple

processes will be scanning the landmark universe list, the

pointers are also protected with read/write locks which pro-

cesses obtain before following or changing a pointer.
The landmark universes themselves are represented as a

series of landmark maps with one landmark map for each
level in the landmark universe. Each landmark map contains
tuples

(node, landmark, next_hop)

with one entry for each node in the network. The landmark

represents the given node’s landmark at this level, and the

next hop represents the node’s next hop towards this land-

mark. By recursively following the next hops, each node

can reconstruct its path to the landmark. Thus, in a k-level

landmark universe, there are k landmark maps, each with an

entry for all nodes in the network. Thus, each landmark uni-

verse requires O(n·k) space, where n is the number of nodes

in the credit network.

4.4.2 Universe creator processes

We now describe the design of the universe creator pro-

cesses, which construct new landmark universes. Assume

that Canal is configured to construct k-level landmark uni-

verses. The universe creator processes all continually con-

struct landmark universes using the following approach,

taken from [16].

1. Randomly select k random node sets of sizes

20, 21, 22, 23, . . . 2k respectively, from the network.

Let the selected sets be denoted by V0, V1, V2, . . . Vk .

These sets contain the new landmarks at each level.

2. For each set Vi, and every node u ∈ V , calculate the

shortest path from u to each of the landmark nodes in

each set Vi. This is done by having the processes perform

BFSs from each landmark in Vi.

3. Finally, using the BFSs, construct the landmark map for

level Vi by select the closest landmark node in Vi and the

next hop for all nodes.

In Canal, we speed up this universe creator process using

three techniques: First, Canal exploits the fact that conduct-

ing the BFSs from the new landmarks can be parallelized.

We configure the BFSs to be conducted in parallel by a set

of slave threads. Second, to make sure that we only find paths

with available credit, we design the BFS algorithm to only

consider edges with available credit. This allows newly con-

structed landmark universes to “route around” links which

have no available credit (and cannot be used for payments).

Third, the process of selecting the closest landmark at a

given level for all nodes (step 3 above) can be broken down

into a series of merges that can easily be parallelized as

well.6 Let us consider the 2i BFSs that are conducted when

constructing the landmark map for level Vi. Note that these

BFSs are completed at different times by different processes.

The landmark map is constructed by taking the first BFS

and creating an entry for every node in the landmark map

pointing to the landmark at the root of the BFS. Then, as

subsequent BFSs complete, they are merged into the land-

mark map by scanning over the existing landmark map, and

changing any tuples where the node is closer to the new

landmark than to any landmark previously merged. In fact,

multiple landmark maps can be merged together in the same

manner, allowing all of the processes to contribute to con-

structing the landmark map.

Once the new landmark universe is constructed, it is

added on to the end of landmark universe list in the common

6 Our current implementation does not support the parallel BFS merge

feature. We plan to incorporate this in the future.

datastore. At the same time, the oldest landmark universe is

removed from the front of the list and discarded. This en-

sures that landmarks are only “active” for a short period of

time, reducing the likelihood that they will become hotspots

in the network (Section 5 shows this happens rarely).

4.4.3 Path stitcher processes

Finally, we describe the design of the path stitcher processes,

which respond to payment requests from the Sybil tolerance

scheme. Let us suppose that a path stitcher process has

received a request to pay c credits from node a to b. At a high

level, the path stitcher process walks down the landmark

universe list, looking for paths with available credit between

a and b using the landmarks in each universe. As soon as

the path stitcher process has found paths with a total of c

available credits, it returns a successful result. Otherwise, if

the path stitcher process reaches the end of the universe list

without finding a total of c credits, it returns an unsuccessful

result.

To find paths with available credit in a single k-level

landmark universe, the path stitcher process executes the

following algorithm:

1. Scan the k landmark maps and collect the set of common

landmarks between a and b. Note that there is guaranteed

to be at least one common landmark (at level 0).

2. For each shared landmark, use the next hop in the land-

mark map to “stitch” together a path via the landmark.

3. Refine the path by (a) eliminating any cycles and (b)

performing path short-cutting. To perform short-cutting,

we traverse the path up to the landmark node and see if

there is a link from any of these nodes to a node lying in

the path after the landmark node. If so, we short-circuit

the path by using that link to create a shorter path between

a and b.

This process results in up to L paths between a and b, where

L is the number of common landmarks in this universe.7

Next, the path stitcher process pays as much credit as

possible along each path. For each path, the path stitcher

process walks the path, obtaining the lock on each link of

the path, temporarily lowering the credit available to 0, and

then releasing the lock. Once the end of the path has been

reached, the path stitcher calculates the maximum credit

available on the entire path (determined by the link with

the minimal credit available); let this be C. Then, the path

stitcher process walks the path once more, locking each link

and resetting the credit available to be its previous value

minus C. This effects a removal of C credits along the entire

path.

Once sufficient credit has been removed to meet the orig-

inal payment request, the path stitcher process returns a suc-

7 There could be potentially fewer resulting paths, as some of the paths may

end up duplicated (e.g., if a path happens to cross two landmarks). This

happens rarely in practice.

Avg. Avg. max flow

Network Nodes Links degree time (s)

Renren [18] 33 K 1.4 M 21.1 0.352

Facebook [38] 63 K 1.6 M 25.7 0.445

YouTube [23] 1.1 M 5.8 M 5.2 2.91

Flickr [22] 1.6 M 30 M 18.8 15.2

Orkut [23] 3.1 M 234 M 76.3 220

Table 1. Statistics of the networks we evaluate Canal on.

Also included is the average time for completing a max flow

computation.

cessful result. However, if the end of the universe list is

reached without enough credit being found, the path stitcher

process first replaces any credit removed before returning an

unsuccessful result.

The path stitching process is fast, since the landmark

paths are all pre-computed; the path stitcher process simply

walks the paths and removes available credit. Additionally,

the path stitcher processes only ever hold a single link lock

at a given time, ensuring that Canal is deadlock-free. Finally,

the memory requirements of the path stitcher process is low,

as it only needs to temporarily store the paths where it has

removed credit.

4.5 Implementation

Our implementation of Canal is written in 2,269 lines of C++

(excluding publicly available libraries). The current imple-

mentation is designed to be run on a single machine, and

uses Pthreads for the universe creator and path stitcher pro-

cesses and Pthread locks to protect shared data. Our im-

plementation is written so that the deployer can specify

the number of universe creator and path stitcher processes

to use; the tradeoff depends on the number of incoming

payment requests that the deployer wishes to process (since

more path stitcher processes allows a higher throughput, as-

suming CPU resources are available). We demonstrate in

Section 5 that our single-machine implementation is able

to support graphs with over 220 million edges. It is impor-

tant to note while our current implementation runs on a sin-

gle machine, we have designed Canal to be implementable

across a cluster of machines. Doing so would allow Canal

to be deployed on credit networks that are too large to fit

in a single machine’s memory. Canal can be implemented

using graph parallel processing platforms [15, 21] that au-

tomatically distribute the graph state (our credit network)

across multiple machines. This would mean that the Canal

common datastore would be distributed across multiple ma-

chines and the universe creator processes would be using dis-

tributed graph processing algorithms. Existing graph parallel

processing platforms follow the bulk synchronous parallel

(BSP) model [37] and the challenge would be to minimize

the global communication between the processes and the

barrier synchronization cost associated with BSP algorithms.

Additionally, a distributed implementation would likely re-

Renren Facebook YouTube Flickr Orkut

225 292 4,131 13,296 41,787

Table 2. Time in milliseconds to calculate a level-0 land-

mark universe with one universe creator process for various

datasets.

quire transactional updates to the common datastore to prop-

erly handle node failures. However, we leave a full imple-

mentation of a distributed version of Canal to future work.

5. Canal microbenchmarks

In this section, we explore a number of Canal microbench-

marks before exploring how Canal performs alongside Sybil

tolerance schemes in the following section. Here, we center

our evaluation around five questions:

• What is the memory overhead of landmark universes?

• How expensive are landmark universes to compute?

• What is the response time for payment requests?

• Do nodes receive all of their available credits over time?

• Do “hotspots” in the network form around landmarks?

5.1 Experimental setup

We evaluate Canal on five real-world social networks of

varying size, shown in Table 1. These networks are some

of the largest publicly available social network data sets, and

cover a wide number of nodes (33 K to 3.1 M) and edges

(1.4 M to 234 M).

We run our experiments on machines with dual 12-core

Intel Xeon X5650 2.66 GHz processors and 48 GB of RAM.

In many of the experiments, we vary two key parameters of

Canal: the universe level, and the size of the universe list

(i.e., the number of universes that are cached). Unless oth-

erwise stated, each experiment is the average of five random

trials.

For reference, the final column in Table 1 shows the

average time to compute max flow8 between 50 random

pairs of nodes in these networks; this further emphasizes

the computational expense of conducting credit payments on

large networks. Even for networks with only a few million

links, the computation time can quickly become multiple

seconds.

5.2 Memory and compute time of landmark universes

Canal has a certain fixed memory requirement to hold the

credit network and edge locks in memory. For example,

Orkut, the largest graph we consider, requires almost 20

GB of memory for storing the graph state. However, Canal

also requires memory for storing the landmark universes;

the amount depends on the universe level and size of the

universe list. Figure 7 plots the memory size for a single

8 We use the push-relabel algorithm [13] for computing max flow.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 2 4 6 8

M
e

m
o

ry
 r

e
q

u
ir

e
d

 (
G

B
)

Universe level

Renren

Facebook

YouTube

Flickr

Orkut

Figure 7. Memory requirements of different universe lev-

els. The memory required increases linearly with the uni-

verse level.

landmark universe of different levels for each of the five

networks we consider (multiple landmark universes simply

require multiples of this size). We observe that the memory

size increases linearly with the landmark universe level, and

that the sizes allow multiple landmark universes to be kept

in memory on our test machine.

We now turn to examine how quickly landmark universes

can be created. Table 2 presents the time required to con-

struct a level-0 landmark universe with a single universe cre-

ator process; this follows the general trends of the max flow

results in Table 1, but is sometimes higher due to Canal’s use

of per-link locks.

However, in Canal, we can take advantage of multiple

cores to conduct landmark universe creation in parallel. Fig-

ures 8 and 9 present the speedup (relative to creating a land-

mark universe with a single universe creator process) and

absolute time, respectively, when creating different levels of

universes with 22 universe creator processes. We observe

that higher level universes enable a greater level of paral-

lelism, meaning Canal is more efficient at creating higher

level landmark universes.

5.3 Latency of payment requests

Next, we examine the latency of processing payment re-

quests in Canal. For this experiment, we select 5,000 random

pairs of nodes in each network, and issue a payment request

between each pair of nodes for one credit. We then record the

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12

R
e

la
ti

v
e

 s
p

e
e

d
u

p

Universe level

Renren

Facebook

Youtube

Flickr

Orkut

Figure 8. Landmark universe creation time speedup, rela-

tive to a single universe creator process, for Canal configured

with 22 universe creator processes.

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 2 4 6 8 10 12

U
n

iv
e

rs
e

 c
re

a
ti

o
n

 t
im

e
 (

s
)

Universe level

Renren

Facebook

Youtube

Flickr

Orkut

Figure 9. Graph showing the absolute landmark universe

creation time as we increase the number of universe levels,

for Canal configured with 22 universe creator processes.

latency of the response from Canal. To see how the latency

scales with the payment size, we then repeat this experiment

by pushing five units of credit. We use 8 level-5 landmark

universes, and the credit network is initialized to have one

available credit per link.

Table 3 presents the results for the five networks. We

observe that both the median and 95th percentile latency

for pushing one credit is below 1 millisecond for all net-

works, and the latency for pushing five credits is below 2.5

milliseconds for all networks. This represents a substantial

speedup, as existing systems often take multiple seconds to

determine if sufficient available credit is present in the credit

network [24, 29].

5.4 Do nodes eventually receive all available credit?

Recall that, at any particular moment, Canal can only use

a subset of the paths with available credit between two

nodes (in particular, it can only use the paths via their com-

mon landmarks). However, if available credit along some of

these paths is used up, Canal will disregard the exhausted

links when constructing new landmark universes. Thus, even

though a node only has access to a subset of its available

credit at any one time, it will eventually receive more of its

credit as new landmark universes are created. We now ex-

plore how long it takes for a node to access all of its available

credit.

To do so, we pick 50 random pairs of nodes with degree

greater than 10 (so that there is significant available credit

between them) and the credit network is initialized to have

1 credit 5 credits

Network Median 95th P. Median 95th P.

Renren 0.04 0.09 0.40 0.64

Facebook 0.04 0.13 0.52 0.74

YouTube 0.14 0.59 1.3 2.3

Flickr 0.17 0.51 1.3 2.0

Orkut 0.34 0.83 0.89 1.9

Table 3. Median and 95th percentile time in milliseconds

taken by Canal to respond to a payment requests pushing a

one unit and five units of credit.

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10

C
u

m
u

la
ti

v
e

 f
ra

c
ti

o
n

 o
f

a
c

tu
a

l
m

a
x

 f
lo

w
 a

v
a

il
a

b
le

 f
o

r
p

a
y

m
e

n
ts

Number of cycles

Renren

Facebook

YouTube

Flickr

Orkut

Figure 10. Cumulative fraction of actual max flow that

is available for payments in Canal, for increasing cycles

of landmark universe creation. We observe that nodes can

quickly access all of their available credit.

one available credit per link. We then conduct a number of

cycles, where each cycle consists of constructing a new set

of 8 level-5 landmark universes and then making the largest

payment possible between each pair of nodes (meaning we

use up all of the available credit between the two nodes).

Over time, we expect that the total payments will approach

the actual max flow in the credit network between each pair

of nodes.

Figure 10 presents the results of this experiment, showing

the cumulative fraction of the actual max flow in the credit

network that is used for payments. As expected, we see

that the total payments asymptotically approach the actual

max flow. More importantly, we observe that it does so very

quickly: For example, node pairs in each dataset can achieve

between 80% and 95% of their actual max flow in just 4

cycles. This indicates that even though Canal only has access

to a subset of paths at any one time, nodes do eventually

receive all of their available credit, even over short time

windows.

5.5 Do landmarks lead to hotspots?

Our final microbenchmark concerns whether or not land-

marks in Canal end up becoming “hotspots.” To explore this

effect, we again select 5,000 random pairs of nodes and have

each pair of nodes pay one credit between each other. We

 1

 10

 100

 1000

 0 20 40 60 80 100

N
u

m
b

e
r

o
f

ti
m

e
s

 l
in

k
 u

s
e

d

Percentile of links

Renren

Facebook

Youtube

Flickr

Orkut

Figure 11. Distribution of the number of times links are

used when processing 5,000 random credit payments. For

all networks, the 99th percentile links are used fewer than

14 times.

Category Nodes Links

Clothes 1.3 M 5.5 M

Home 1.3 M 4.5 M

Collectables 419 K 1.2 M

Electronics 600 K 1.5 M

Computing 626 K 1.7 M

Table 4. Size statistics of the different categories of risk net-

works used in evaluating Canal implementation of Bazaar.

then count the total number of times each link in the network

was used in transferring a credit. If hotspots form, we would

expect to see a number of links used many times. For this

experiment, we configure Canal to have 8 level-5 landmark

universes.

The results of this experiment are shown in Figure 11. We

plot the number of times a link is used versus percentile of

links, and find that almost all links are used only once, and

very few links are used many times. For example, the 90th

percentile link is used no more than twice in all networks,

and the 99th percentile link is used no more than 14 times.

6. Applying Canal to Sybil tolerance systems

The second half of our evaluation considers the impact

that Canal would have on previously proposed Sybil toler-

ance schemes. In particular, we integrate Canal into both

Bazaar [29] and Ostra [24]. We then recreate the original

evaluation of these schemes and measure the speedup that

these schemes observe when running with Canal, as well

as the resulting impact on accuracy (in terms of false neg-

atives).

6.1 Bazaar

Recall that Bazaar is designed to strengthen user reputations

in online marketplaces like eBay. We replace the storage

of the credit network (called the risk network in Bazaar)

and max flow calculation components with Canal, and re-

perform the same evaluation as in the original paper. Bazaar

was originally evaluated using a 90-day trace of five of the

largest categories on the UK eBay site, and we use the same

dataset to evaluate accuracy and speed up of our imple-

mentation compared to the original one. The five categories

range in size from 419 K users to 1.3 M users, and from 1.2

M links to 5.5 M links as shown in Table 4.

Table 5 presents the latency for credit network payment

transactions for the original implementation of Bazaar and

for Bazaar augmented with Canal. We make a number of

interesting observations. First, we observe that the median

latency for transactions is below 200 microseconds for all

categories, and the 95th percentile latency is below 4 mil-

liseconds. This low latency enables Bazaar to be used in an

online fashion. Second, when compared to the latency of the

original Bazaar implementation, we observe speedups of be-

Orig. Canal Relative

Category Avg. Med 95th P. Speedup

Clothes 6,290 0.2 3.4 2,329 ×

Home 5,340 0.1 3.4 785 ×

Collectables 1,180 0.08 2.0 1,404 ×

Electronics 1,660 0.09 2.70 1,522 ×

Computing 1,410 0.1 2.56 1,084 ×

Table 5. Time in milliseconds required to process credit

network transactions in Bazaar with Canal with 30 level-2

landmark universes. Also included is the original processing

time from the Bazaar paper and the relative speedup. We

observe speedups between 785-fold and 2,329-fold.

tween 785-fold and 2,329-fold. This underscores the impact

of Canal on Sybil tolerance systems like Bazaar.

However, this reduction in latency comes at the cost of

accuracy. Since Canal can only look for credit on a subset of

paths, it may be unable to find sufficient available credit be-

tween a buyer–seller pair, thereby wrongly flagging a trans-

action as fraudulent. To determine how often this occurs, we

calculate the fraction of the transactions for which the origi-

nal Bazaar implementation found sufficient available credit,

but Canal was unable to.

The results of this experiment are presented in Table 6,

for a configuration with 30 level-3 landmark universes. We

observe that Canal provides between 94% and 98% accu-

racy in all categories, meaning that at least 94% of the time,

Canal is able to find sufficient available credit when the orig-

inal Bazaar implementation did as well. We further explore

the sensitivity of Canal’s accuracy to configuration param-

eters in Figure 12, where we vary the number of landmark

universes and the level of each universe for the Home cat-

egory. We observe that accuracy over 95% can be achieved

with 20 level-3 landmark universes, suggesting that even a

modest number of landmark universes is likely to be suffi-

cient to deploy Canal in practice.

6.2 Ostra

Next, we explore integrating Canal into Ostra [24], a system

designed to prevent unwanted communication. Ostra was

Category Accuracy

Clothes 94.2%

Home 97.0%

Collectables 97.6%

Electronics 95.4%

Computing 95.9%

Table 6. Accuracy of Bazaar implementation using Canal

in each category, relative to the original Bazaar implementa-

tion. Canal provides high accuracy for Bazaar, implying that

users are rarely impacted by the approximate available credit

that Canal finds.

 0

 20

 40

 60

 80

 100

 5 10 15 20 25 30

A
c

c
u

ra
c

y
 (

%
)

Number of landmark universes

Level = 0

Level = 1

Level = 2

Level = 3

Figure 12. Accuracy of Bazaar with Canal for the Home

category, for varying numbers of landmark universes and

universe levels. Over 95% accuracy can be achieved with

20 level-3 landmark universes.

originally evaluated on a social network derived from largest

strongly connected component of YouTube network [23];

this network consists of 446 K nodes and 3.4 M links [24].

A synthetic communication trace was generated using statis-

tics of a real email trace. We re-run the original Ostra ex-

periments using the same input data, and evaluate accuracy

and speed up of our implementation compared to the original

one. We use a configuration of Ostra with 128 randomly se-

lected nodes as spammers in the system (each of whom tries

to send 500 spam messages), with a credit limit of 3 on every

link, and with a 1% false email classification probability by

good users.

We first examine the speedup that is observed with Canal

deployed to Ostra. Presented in Table 7, the results show

that if Ostra were to use Canal, the average time taken

to find a path with available credit would drop from 35.4

milliseconds to 190 microseconds (a relative speedup of

over 186 times). We observe a lower speedup when Canal

is applied to Ostra, compared to Bazaar, for two reasons:

First, Ostra requires only a single path for every transaction,

while Bazaar generally requires the use of multiple paths,

and second, the attacker strength is lower for Ostra (just 128

attackers each attempting to send 500 messages).

We now examine the accuracy that Canal provides when

deployed with Ostra. Similar to the evaluation with Bazaar,

we calculate the fraction of transactions for which the orig-

inal version of Ostra was able to find a path with available

credit, but Canal is not. The results of this experiment for

different configurations of the number of landmark universes

and the universe level is presented in Figure 13. We see that

Original Canal Relative

Avg. Median 95th Percentile Speedup

35.4 0.05 1.4 186 ×

Table 7. Time in milliseconds required to process a credit

network transaction in Ostra in Canal with 30 level-3 land-

mark universes. Also included is the original processing time

from the Ostra paper and the relative speedup.

0

20

40

60

80

100

 5 10 15 20 25 30

A
c

c
u

ra
c

y
 (

%
)

Number of landmark universes

Level = 0

Level = 1

Level = 2

Level = 3

Level = 4

Level = 5

Figure 13. Accuracy of the Ostra implementation using

Canal, for varying numbers of landmark universes and uni-

verse levels. Over 99% accuracy can be achieved once 5

landmark universes are used.

Canal provides over 99% accuracy once at least five land-

mark universes are used.

6.3 Summary

Overall, the results in this section demonstrate that Canal can

be easily integrated into existing Sybil tolerance schemes.

Moreover, the results show that implementations of both

Ostra and Bazaar with Canal achieve significant speedup

while providing an approximation that only rarely impacts

the credit available to users. Given the previous high com-

putation cost of these systems, Canal opens the door for

schemes like Ostra, Bazaar, and SumUp to be deployed

in real systems, with on-demand computations done over

highly-dynamic credit networks.

7. Conclusion

We have presented Canal, a system that can efficiently and

accurately transfer credit payments over large credit net-

works. Canal is designed to complement existing Sybil tol-

erance schemes such as Ostra [24], SumUp [35], Trust-

Davis [9], and Bazaar [29]. We argued that these schemes

are all based on computing payments over credit networks,

a computation that requires computing max-flow over a

graph, that leads to significant computational complexity

and makes them impractical to deploy on real-world sites.

With Canal, these schemes see a dramatic speedup, making

them practical for real-world use.

An evaluation demonstrated that Canal’s approximation

rarely impacts honest users and does not allow malicious

users to obtain any additional credit. Furthermore, Canal is

able to perform payment calculations in under a few mil-

lisecond on graphs with hundreds of millions of links, a mas-

sive speedup when compared to existing approaches. Finally,

we demonstrated that, were existing Sybil tolerance schemes

to use Canal, the time necessary to process credit payments

would be reduced by multiple orders of magnitude while

achieving over 94% accuracy.

Acknowledgements

We thank the anonymous reviewers, Allen Clement, Peter

Druschel, and our shepherd, Emin Gün Sirer, for their help-

ful comments. This research was supported in part by NSF

grant IIS-0964465, a Google Research Award, and an Ama-

zon Web Services in Education Grant.

References

[1] M. Abadi, M. Burrows, M. Manasse, and T. Wobber. Mod-

erately hard, memory-bound functions. In ACM Transactions

on Internet Technology, volume 5, pages 299–314, 2005.

[2] N. Borisov. Computational puzzles as Sybil defenses. In

Proceedings of the 6th IEEE International Conference on

Peer-to-Peer Computing (IEEE P2P’06), 2006.

[3] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S.

Wallach. Secure routing for structured peer-to-peer overlay

networks. In SIGOPS Operating Systems Review, volume 36,

pages 299–314, 2002.

[4] H. Chun, H. Kwak, Y.-H. Eom, Y.-Y. Ahn, S. Moon, and

H. Jeong. Comparison of online social relations in volume vs

interaction: A case study of cyworld. In Proceedings of the 8th

ACM/USENIX Internet Measurement Conference (IMC’08),

2008.

[5] P. Dandekar, A. Goel, R. Govindan, and I. Post. Liquidity in

credit networks: A little trust goes a long way. In Proceed-

ings of the 12th ACM Conference on Electronic Commerce

(EC’11), 2011.

[6] G. Danezis and P. Mittal. SybilInfer: Detecting Sybil nodes

using social networks. In Proceedings of the 16th Network and

Distributed System Security Symposium (NDSS’09), 2009.

[7] A. Das Sarma, S. Gollapudi, M. Najork, and R. Panigrahy. A

sketch-based distance oracle for web-scale graphs. In Pro-

ceedings of the 3rd ACM International Conference of Web

Search and Data Mining (WSDM’10), 2010.

[8] E. A. Dinic. An algorithm for the solution of the max-flow

problem with the polynomial estimation. Doklady Akademii

Nauk SSSR, 194(4), 1970.

[9] D. do B. DeFigueiredo and E. T. Barr. Trustdavis: A non-

exploitable online reputation system. In Proceedings of the

7th IEEE International Conference on E-Commerce Technol-

ogy (IEEE E-Commerce), 2005.

[10] J. Douceur. The Sybil Attack. In Proceedings of the 1st

International Workshop on Peer-to-Peer Systems (IPTPS’02),

2002.

[11] L. R. Ford and D. R. Fulkerson. Maximal flow through a

network. In Canadian Journal of Mathematics, volume 8,

pages 399–404.

[12] A. Ghosh, M. Mahdian, D. M. Reeves, D. M. Pennock, and

R. Fugger. Mechanism design on trust networks. In Proceed-

ings of the 3rd International Conference on Internet and Net-

work Economics (WINE’07), 2007.

[13] A. V. Goldberg and R. E. Tarjan. A new approach to the

maximum flow problem. In Proceedings of the 18th annual

ACM Symposium on Theory of Computing (STOC’86), 1986.

[14] R. E. Gomory and T. Hu. Multi-terminal network flows. In

Journal of the Society for Industrial and Applied Mathematics

(SIAM), volume 9, pages 551–570, 1961.

[15] D. Gregor and A. Lumsdaine. The parallel BGL: A generic

library for distributed graph computations. In Proceedings of

the Parallel Object-Oriented Scientific Computing (POOSC),

2005.

[16] A. Gubichev, S. Bedathur, S. Seufert, and G. Weikum. Fast

and accurate estimation of shortest paths in large graphs. In

Proceedings of the 19th ACM international conference on

Information and knowledge management (CIKM’10), 2010.

[17] T. Hartmann and D. Wagner. Fully-dynamic cut tree construc-

tion. Technical Report 2011.25, Karlsruhe Institute of Tech-

nology, 2011.

[18] J. Jiang, C. Wilson, X. Wang, P. Huang, W. Sha, Y. Dai, and

B. Y. Zhao. Understanding latent interactions in online social

networks. In Proceedings of the 10th ACM/USENIX Internet

Measurement Conference (IMC’10), 2010.

[19] J. Leskovec, K. Lang, and M. Mahoney. Empirical compari-

son of algorithms for network community detection. In Pro-

ceedings of the 19th International World Wide Web Confer-

ence (WWW’10), 2010.

[20] C. Lesniewski-Laas and M. F. Kaashoek. Whānau: A Sybil-

proof distributed hash table. In Proceedings of the 7th Sym-

posium on Networked Systems Design and Implementation

(NSDI’10), 2010.

[21] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,

N. Leiser, and G. Czajkowski. Pregel: A system for large-

scale graph processing. In Proceedings of the International

Conference on Management of Data (SIGMOD’10), 2010.

[22] A. Mislove, H. S. Koppula, K. P. Gummadi, P. Druschel, and

B. Bhattacharjee. Growth of the Flickr social network. In

Proceedings of the 1st ACM SIGCOMM Workshop on Social

Networks (WOSN’08), 2008.

[23] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and

B. Bhattacharjee. Measurement and analysis of online social

networks. In Proceedings of the 7th ACM/USENIX Internet

Measurement Conference (IMC’07), 2007.

[24] A. Mislove, A. Post, K. P. Gummadi, and P. Druschel. Ostra:

Leveraging trust to thwart unwanted communication. In Pro-

ceedings of the 5th Symposium on Networked Systems Design

and Implementation (NSDI’08), 2008.

[25] M. Mitzenmacher and E. Upfal. Probability and Computing.

Cambridge University Press, Cambridge, UK, 2005.

[26] A. Mohaisen, A. Yun, and Y. Kim. Measuring the mixing time

of social graphs. In Proceedings of the 10th ACM/USENIX

Internet Measurement Conference (IMC’10), 2010.

[27] M. Mondal, B. Viswanath, A. Clement, P. Druschel, K. P.

Gummadi, A. Mislove, and A. Post. Limiting large-scale

crawls of social networking sites. In Proceedings of the

Annual Conference of the ACM Special Interest Group on

Data Communication (SIGCOMM’11, poster session), 2011.

[28] M. Motoyama, D. McCoy, K. Levchenko, S. Savage, and

G. M. Voelker. Dirty jobs: The role of freelance labor in web

service abuse. In Proceedings of the 20th USENIX conference

on Security (SEC’11), 2011.

[29] A. Post, V. Shah, and A. Mislove. Bazaar: Strengthening user

reputations in online marketplaces. In Proceedings of the 8th

Symposium on Networked Systems Design and Implementa-

tion (NSDI’11), 2011.

[30] D. Quercia and S. Hailes. Sybil attacks against mobile

users: Friends and foes to the rescue. In Proceedings of

the 29th Conference on Information Communications (INFO-

COM’10), 2010.

[31] S. Seuken and D. C. Parkes. On the Sybil-proofness of ac-

counting mechanisms. In Proceedings of the 6 th Workshop on

the Economics of Networks, Systems and Computation (NetE-

con’11), 2011.

[32] T. Stein, E. Chen, and K. Mangla. Facebook immune sys-

tem. In Proceedings of the 4th Workshop on Social Network

Systems (SNS’11), 2011.

[33] D. Streitfeld. Ferreting out fake reviews online.

http://nytimes.com/2011/08/20/technology/

finding-fake-reviews-online.html.

[34] N. Tran, J. Li, L. Subramanian, and S. S. Chow. Optimal

Sybil-resilient node admission control. In Proceedings of

the 30th Conference on Information Communications (INFO-

COM’11), 2011.

[35] N. Tran, B. Min, J. Li, and L. Subramanian. Sybil-resilient

online content voting. In Proceedings of the 6th Symposium on

Networked Systems Design and Implementation (NSDI’09),

2009.

[36] P. Tsuchiya. The landmark hierarchy: A new hierarchy for

routing in very large networks. In Proceedings of the Annual

Conference of the ACM Special Interest Group on Data Com-

munication (SIGCOMM’88), 1988.

[37] L. G. Valiant. A bridging model for parallel computation.

Communications of the ACM, 1990.

[38] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi. On

the evolution of user interaction in Facebook. In Proceedings

of the 2nd ACM SIGCOMM Workshop on Social Networks

(WOSN’09), 2009.

[39] B. Viswanath, M. Mondal, A. Clement, P. Druschel, K. P.

Gummadi, A. Mislove, and A. Post. Exploring the design

space of social network-based Sybil defense. In Proceedings

of the 4th International Conference on Communication Sys-

tems and Network (COMSNETS’12), 2012.

[40] B. Viswanath, A. Post, K. P. Gummadi, and A. Mislove. An

analysis of social network-based Sybil defenses. In Proceed-

ings of the Annual Conference of the ACM Special Interest

Group on Data Communication (SIGCOMM’10), 2010.

[41] K. Walsh and E. G. Sirer. Experience with a distributed object

reputation system for peer-to-peer filesharing. In Proceedings

of the 3rd Symposium on Networked Systems Design and

Implementation (NSDI’06), 2006.

[42] Z. Yang, C. Wilson, X. Wang, T. Gao, B. Y. Zhao, and Y. Dai.

Uncovering social network Sybils in the wild. In Proceedings

of the 11th ACM/USENIX Internet Measurement Conference

(IMC’11), 2011.

[43] H. Yu. Sybil defenses via social networks: A tutorial and

survey. SIGACT News, 42(3), 2011.

[44] H. Yu, P. B. Gibbons, M. Kaminsky, and F. Xiao. SybilLimit:

A near-optimal social network defense against Sybil attacks.

In Proceedings of the IEEE Symposium on Security and Pri-

vacy (IEEE S&P’08), 2008.

[45] H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman. Sybil-

Guard: Defending against Sybil attacks via social networks. In

Proceedings of the Annual Conference of the ACM Special In-

terest Group on Data Communication (SIGCOMM’06), 2006.

[46] C. M. Zhang and V. Paxson. Detecting and analyzing au-

tomated activity on twitter. In Proceedings of the 12th In-

ternational Conference on Passive and Active Measurement

(PAM’11), 2011.

